Calculus AB

2-3 (Day 2) Product Rule, Quotient Rule, Trigonometric Derivatives, and Higher Order Derivatives

<u>Trig Derivatives</u> $\frac{d \sin x}{dx} = \frac{d \cos x}{dx} =$

$$\frac{d}{dx}(\tan x) =$$

$$f(x) = \sec x, \ f'(x) = \underline{\qquad}$$

$$g(x) = \csc x, \ g'(x) = \underline{\qquad}$$

$$h(x) = \cot x, \ h'(x) = \underline{\qquad}$$

Complete the table without using the Quotient Rule. (pg 124)

Function	<u>Rewrite</u>	Differentiate	<u>Simplify</u>
19) $y = \frac{x^2 + 2x}{3}$			

Find an equation of the tangent line to the graph of f at the indicated point.

67)
$$f(x) = \tan x$$
 ($\frac{\pi}{4}$,1)

Assignment:		
Pg. 124		
19 - 53 odd,		
58, 61, 66,		
83, 84, 86,		
93, 97, 99,		
105-108 all		